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Abstract. The study of charge asymmetry of pions in the high-energy process ep → eπ+π−p (γp → π+π−p)
at very small dipion momenta offers a method to measure the phase of the forward hadronic (quasi-) elastic
amplitude γp → ρp. We estimate the potential of such measurements at HERA.

1 Introduction

The phase δF of the forward amplitude of the hadronic
elastic scattering

A = |A|eiδF ≡ |A| exp
[
i
π
2

(1 +∆F)
]

(1)

at high energy, treated often as a pomeron phase, is an
important object in hadron physics.

However, the object studied in modern experiments and
dubbed the pomeron seems to be complex. In some models
it is the same for all processes, in other models it is pro-
cess dependent, which manifests itself in different effective
intercepts in different processes. The measurement of the
phase of this object in various processes will be a useful step
towards clarification of its nature. For example, in the naive
Regge-pole pomeron model, this phase is related directly
to the pomeron intercept, ∆F = −(αIP − 1), in the model
of a dipole pomeron,∆F = −(αIP −1)−π/(2 ln(s/s0)), [2],
for the model with Regge pole and cuts one adds to the
value given by pomeron pole intercept the contribution of
the branch cut with process-dependent coefficient.

Up to this moment, the phase of such a type was mea-
sured at very high energy only for pp, p̄p elastic scat-
tering (via the study of Coulomb interference near for-
ward direction; see for the latest results [1] and for ref-
erences to earlier experiments therein). Such experiments
demand a detailed measurement of the cross section at
extremely low transverse momentum of the recorded par-
ticle, p⊥ ≈ √|t| � 30 MeV, which translates into very
small scattering angles.

Here we propose to measure a similar phase for the
process γp → ρp via the study of the charge asymmetry of
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pions in the diffractive process

ep → eπ+π−p (γp → π+π−p). (2)

To describe our proposal in more detail, we denote by p±
the momenta of the π± and

rµ = pµ+ − pµ−, kµ = pµ+ + pµ−, M =
√
k2. (3)

We propose to measure the charge asymmetry of the pions
in the reaction (2) in the region

(20 ÷ 30) MeV < k⊥ < 100 MeV,

1.1 < M < 1.4 GeV.
(4)

An essential part of our description is valid also at M <
1.1 GeV. However, we do not present here definite predic-
tions for an experiment for this mass region due to the
complex structure of the C-even amplitude of the dipion
production here. AtM > 1.4 GeV diffractive exclusive pro-
duction of pion pairs becomes a process too rare to use in
the problems considered.

The main mechanism of the reaction in this domain is
diffractive photoproduction of dipions in the C-odd state
(the ρ meson and its “tails”, including ρ′) via the “phys-
ical pomeron” – the vacuum quantum number exchange
in t-channel. The phase of the amplitude of this “physi-
cal pomeron” (1) is the main subject of our study. Besides,
dipions can be produced in the C-even state via
(i) the ρ, ω Regge exchange,
(ii) the odderon exchange and
(iii) the one-photon exchange with a proton (the Pri-
makoff effect).

The interference of the amplitudes of the C-odd and C-
even dipion production provides the charge asymmetry of
the observed pion distribution. The experimental study of
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this charge asymmetry is a good tool for the investigation
of a number of phenomena [4].

These exchanges have a very different dependence on
the transverse momentum of the dipion k⊥.

The Primakoff effect is strongly peaked at small trans-
verse momenta of the dipion k⊥. It can be neglected at
k⊥ > 200 MeV (see details in the text below). It is natural
to expect that the odderon contribution, just as the ρ/ω
reggeon exchanges, has a flatter k⊥ dependence, similarly
to other hadronic amplitudes. Besides, the contribution of
the ρ/ω reggeon exchanges was estimated to be very small
in the HERA energy region [5], and according to modern
data the odderon contribution is low enough, so that both
these contributions can be neglected at the considered low
transverse momenta (4). Therefore [6] we have the follow-
ing.
(i) At k⊥ < 100 MeV the charge asymmetry discussed
is described by interference of the pomeron contribution
with the Primakoff one, and it is sensitive to the phase
δF. This sensitivity offers a method to measure δF in the
discussed experiments.
(ii) At k⊥ ≈ 0.3–1 GeV the Primakoff contribution is neg-
ligible, the discussed charge asymmetry is described by an
interference of the pomeron and odderon contributions, and
this very experiment provides an opportunity to discover
the odderon [5, 6].

On the proposed experimental set-up we remark the fol-
lowing. We suggest to observe the dipion final state without
other particles in detectors (without observation of scat-
tered proton or electron). The pions that hit the detector
have transverse momenta p±⊥ ∼ M/2 ∼ 500 MeV with
emission angles 20÷ 150 mrad, which looks not so difficult
to measure. It is the sum of the transverse momenta of the
two pions k⊥ that is supposed to be small and measur-
able. So, in order for this method to be efficient, we need a
reasonable resolution of the reconstruction of each pion’s
transverse momentum. The choice of the lower bound in
k⊥ (4) corresponds to the anticipated accuracy of this mea-
surement.

Let us stress a vital feature of our suggestion. The
procedure we propose does not demand the measurement
of very small scattering angles of pions.

The quality of this set-up can be controlled via mea-
surement of the charge-symmetric part of the cross section
(CSP) in two ways. First, the observation of events with
the same pion content and recording of scattered electron
with k⊥e ≤ 30 ÷ 50 MeV has a low efficiency. However
these observations will give CSP in the considered kine-
matical region with good enough accuracy. Second, the
known results for the CSP at higher total transverse mo-
mentum (obtained with recording of electron and proton)
can be used for an extrapolation in the kinematical region
under interest.

In the next section we discuss the kinematics of the
process and introduce the charge asymmetric variables.
In Sect. 3 we present the well known amplitudes of C-
odd and C-even dipion production. In Sect. 4 we study
the differential cross section and find the integral charge
asymmetries. In Sect. 5 we present numerical results for γp

and ep collisions. Discussion and conclusions are found in
Sect. 6.

2 Kinematics

In the proposed set-up without recording of electrons, the
main contribution to the ep → eπ+π−p cross section is
given by a convolution of the equivalent photon spectrum
with cross section of mass shell for the γp → π+π−p sub-
process. In the considered region of the k⊥ accuracy of this
equivalent photon (or Weiszäcker–Williams) approxima-
tion is very high (much better than k2

⊥max/m
2
ρ). We stress

again that the procedure we propose does not demand
the measurement of very small scattering angles of pions.
Therefore we focus first on the subprocess – the dipion
quasi-elastic photoproduction off the proton γp → π+π−p
considering the limitation in k⊥ (4) as that for this subpro-
cess. The convolution with equivalent photon spectrum is
considered in Sect. 4.2.

Let us first consider the pocess γp → π+π−p. The
energies we have in mind correspond to the HERA energy
range (√sγp ∼ 100÷200 GeV). The initial momenta of the
photon and proton are q and P respectively, s = (q+P )2,
the initial photon polarization vector is e. We use the
kinematical variables (3) for this process as well.

We define the z-axis as the γp collision axis and label
the vectors orthogonal to this axis by ⊥. Let us denote
by z+ and z− the standard light cone variables for each
charged pion, z± ≈ (ε± + p±z)/(2Eγ) = (p±P )/(qP ) (for
the considered process z+ + z− = 1).

We direct the x-axis along the vector k⊥ and define byψ
the azimuthal angle of the linear photon polarization with
respect to the fixed laboratory frame of reference. For in-
stance, for the photon in electroproduction ep → eπ+π−p,
virtual photons are polarized in the electron scattering
plane and ψ is the azimuthal angle relative to the elec-
tron scattering plane. Then the polarization vector of the
initial photon with helicity λγ = ±1 can be written as
eλ = − 1√

2
· e−iλγψ(λγ , i).

It is useful also to consider polar and azimuthal angles
of π+ in the dipion CMS, θ and φ, and the velocity of a
pion in this frame β =

√
1 − 4m2

π/M
2, so that rCMS =

βM(0, sin θ cosφ, sin θ cosφ, cosθ). We denote by J the
total angular momentum (total spin) of the dipion, by λγ
and λπ+π− the helicities of photon and produced dipion,
respectively, and by n = |λγ −λρ| the value of the helicity
flip for each amplitude. (The final results are averaged over
initial photon polarizations.) Instead of phase analysis in
terms of these angular variables, many physical problems
can be solved definitely via the measurement of charge
asymmetry of pions.

The phenomenon of charge asymmetry is the difference
in the distributions of particles and antiparticles. It is de-
termined by the part of the differential cross section that
changes sign under a rµ → −rµ change. Particularly, we
describe the forward–backward (FB) and transverse (T)
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asymmetries by the variables

FB : ξ =
z+ − z−

β(z+ + z−)
= cos θ,

T : v =
p2
+⊥ − p2

−⊥ − ξk2
⊥

βM |k⊥|
≡ (ρ⊥k⊥)
βM |k⊥|

= sin θ cosφ; ρ⊥ = r⊥ − ξk⊥. (5)

We consider the amplitude of the dipion production A,
which is normalized so that

dσ = |A|2 βdM2 dk2
⊥ d cos θ dφ

dψ
2π

=
2√

1 − ξ2 − v2
|A|2 βdM2 dk2

⊥ dξ dv
dψ
2π

. (6)

We will see below that only a transverse asymmetry arises
in the case considered. We describe the values of this
charge asymmetry and the charge-symmetric background
by the quantities

∆σT =
∫

dσ(v > 0)−
∫

dσ(v < 0), σbkgd =
∫

dσ, (7)

with integration over the (identical) suitable region of the
final phase space.

3 The amplitudes

Note first that in the considered range of momentum trans-
fer (4) the inelastic transitions in the proton vertex as well
as the helicity-flip elastic transitions are small.

We now consider the C-odd dipion diffractive produc-
tion. It is described by the “physical pomeron”. It has been
studied both in theory and in experiment (e.g. at HERA)
as a production of C-odd resonances, mainly the ρ(770)
meson with well known properties.

Our basic assumption is that the amplitude can be
written in the form

A =
∑
Jn

AJn(s, t,M2)DJ(M2)Eλγ ,λππ

J . (8)

(i) The first factor AJn(s, t,M2) is “the pomeron ampli-
tude” for the production of the dipion state with effective
mass M , angular momentum J and helicity flip n. In the
considered mass region the contribution with J = 1 dom-
inates (the admixture of J = 3 looks negligible). In our
discussion we assume that in the considered mass interval
the entire dependence of the amplitude A on the dipion
mass M at t ≈ 0 can be accumulated with a high pre-
cision in the factor DJ(M2) so that the amplitude AJn
is only weakly dependent on the dipion mass M . It is
normalized in the ρ-meson peak in such a manner that
A1n=0(M = Mρ) = eiδF |A1n|, with

|A1n|2 = σρBe−Bk2
⊥ with

B ≈ 10 GeV−2, σρ ≈ 11 µb.
(9)

The s-channel helicity conservation λπ+π− = λγ for
process (2) is a well established fact. For the considered
k⊥ region, the helicity violating amplitudes are as small
as ∼ (|k⊥|/M)n ≤ (0.03)n, and we neglect them below.
Lastly, in the considered region (4) the t-dependence of
the amplitude is negligible.
(ii) The second factor DJ(M) describes the decay of this
dipion state to pions – it is driven by the strong interaction
of the pions in the final state. In similarity to the construc-
tion of the pion formfactor, it should be constructed from
contributions of ρ, ρ′, ρ′′ in a manner to describe the data in
the effective mass interval considered. At 2mπ < M < Mρ

one can use for D1 the well known Gounaris–Sakurai ap-
proximation obtained for the pion formfactor. AtM > Mρ

one should take into account also the ρ′ etc. states with
variable parameters given by the coupling constants and
parameters of ρ′, ρ′′. A reasonable parameterization should
give a complete description of the dipion mass spectrum
∝ |D1|2 in the considered region1. Below, we use the fit
from [7]. It covers the required mass interval and includes ρ
running width and ρ′/ρ′′ states. Note that the parameters
of the model can be fixed with a better accuracy with a
detailed measurement of the dominant C-even dipion mass
spectrum in the very experiment we propose.

The qualitative discussion becomes transparent with
the standard Breit–Wigner factor for R = ρ(770) (includ-
ing Rπ+π− coupling)

DJ(M2) ≈
√
mRΓRBr(R → π+π−)/π
−M2 +m2

R − imRΓR
. (10)

(iii) The third factor Eλγ ,λππ

J describes the angular dis-
tribution of the pions in their rest frame, Eλγ ,λππ

J =
Y J,λππ (θ, φ)e−iλγψ.

Finally, the amplitude of the C-odd dipion photopro-
duction reads

A− = eiδF · |A1,0(s)| ·D1(M2) ·
√

3
8π

sin θeiλγ(φ−ψ) (11)

≡ eiδF · |A1,0(s)| ·D1(M2) ·
√

3
8π

√
1 − ξ2 eiλγ(φ−ψ).

Here and below the subscript, − or +, on A denotes
the C-parity of the produced dipion.

The amplitude of the production of C-even dipions via
the Primakoff effect is the same as that in the two-photon
processes e+e− → e+e−π+π− [10, 11]. In the regions of
interest (4) the dominant contribution is given by the al-
most real photon exchanges with both electron and proton.
Therefore, the total helicity of the initial two-photon state

1 To take into account a possible dependence B(M), one
should distinguish here a quantity defined at t = 0 and that
obtained by an extrapolation procedure, the second quantity
can contain also a factor appearing due to t-integration of
e−BM k2

⊥ . These quantities will be obtained from two different
methods of verification of the proposed set-up (see the end
of Sect. 1). The first method gives the quantity at t ≈ 0, the
second method can include integration over t.
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and respectively of dipions can be 0 and 2. The amplitude
can be written in a form similar to (8).

Beginning from the threshold, the pions interact
strongly in the I = J = 0 state (which is described by f0
resonances). The other partialwaves are describedwellwith
the QED approximation for point-like pions (with known
small modifications). The QED amplitude with I = 0,
J = 2 become surprisingly large starting from M = 0.5–
0.7 GeV.The other amplitudes canbeneglected everywhere
in our problem.

At M2 	 sγp the amplitude of the Primakoff γp → Rp
process can be written [10] via the two-photon decay width
ΓRγγ of the resonance R with spin J :

Aγ =
√
σ2 · |k⊥|

k2
⊥ +Q2

m
,

with

Q2
m =

(
mpM

2

s

)2

, σ2 ≡ 8παΓRγγ(2J + 1)
m3
R

. (12a)

Here, Q2
m is the minimal value of the virtuality of the

exchanged photon (typically Q2
m < m2

e).
At 1.1 < M < 1.4 GeV, the main contribution is given

by the I = 0, J = 2 partial wave, the other partial waves
being negligible. Here f2(1270)-meson (J = 2) production
dominates. We define by g0 and g2 the relative probability
amplitudes of the dipion production in the states with
helicity 0 and 2; g2

0 + g2
2 = 1. According to the data, the

contribution of the total helicity λππ = 2 dominates, i.e.
g2 
 |g0| (see e.g. [9]). Similarly to (11), the amplitude of
the process can be written as

A+

= Aγ ·D2(M2) · (g2Y2,2(θ, φ) + g0Y2,0(θ, φ)) e−iλγψ

≡ Aγ ·D2(M2) (12b)

×
√

15
32π

[
g2(1 − ξ2)e2iλγφ + g0

√
2
3

(3ξ2 − 1)

]
e−iλγψ,

with the D2 factor given by (10) with R = f2(1270).
For a more precise calculation, the QED contribution

should be also accounted for. In the unitarized model de-
scribing the data near the f2 peak constructed in [8] the
I = 0, J = 2 partial wave contains a phase-shifted Breit–
Wigner factor and a modified Born QED term:

D2(M2) =

√
mfΓf (M2)Br(f2 → π+π−)/π
−M2 +m2

f − imfΓf (M2)
· eiζ

+DQED
2 (M2). (13)

The mass dependence of the f2 width Γf (M2) and
the parametrization for the modified QED contribution
DQED

2 (M2) were taken from [8]. The phase factor eiζ rep-
resents one particular possibility to effectively fulfill the
unitarity constraint: the value of ζ is such that D2 be-
comes purely imaginary at M = mf .

4 Cross sections

4.1 Differential cross section. Photoproduction

The differential cross section of the γp → π+π−p sub-
process at 1.1 < M < 1.4 GeV averaged over the initial
photon polarizations is

dσ = 2
|A− + A+|2√
1 − ξ2 − v2

βdM2dk2
⊥dξdv (14)

= dσsym + dσasym,

dσsym

dM2dk2
⊥dξdv

=
2β√

1 − ξ2 − v2

{
|A1,0(s)|2|D1(M2)|2 3

8π
(1 − ξ2)

+
15
16π

A2
γ |D2|2

[
g2
2

2
(1 − ξ2)2 + 3g2

0

(
ξ2 − 1

3

)2

+ g0g2
√

6
(
ξ2 − 1

3

)
(2v2 + ξ2 − 1)

]}
,

dσasym

dM2dk2
⊥dξdv

= v · β√
1 − ξ2 − v2

· 3
√

5
4π

|A1,0(s)|Aγ · Re
[
D1eiδFD†

2

]

×
[
g2(1 − ξ2) + g0

√
2
3

(3ξ2 − 1)

]
. (15)

Here dσsym represents the charge-symmetric contribu-
tion, which comes from the squares of the pomeron and of
the Primakoff amplitudes. The interference between these
amplitudes produces the charge-asymmetric contribution
dσasym. Since the phase δF enters only dσasym, we need
to extract charge asymmetry; for this task the charge-
symmetric contribution dσsym is a background.

The appearance of the factor v, describing transverse
charge asymmetry, in the interference term is very natural.
First, due to integration over ψ, we are left with terms
diagonal in the photon polarization states, i.e. λγ is the
same in A± and in A†

±. Then, A−A∗
+ can be rewritten as

a charge-symmetric factor multiplied by sin θe±iλγφ. The
averaging over the initial photon polarizations means that
we sum contributions with opposite helicities, i.e. consider
the sum which is proportional to sin θe±iλγφ + h.c. ⇒ v.
In other words, the averaging over photon polarization
transforms complex factors from the spherical harmonics
to the real factor describing charge asymmetry.

For our case when one can consider only one partial
wave in the Primakoff amplitude, the M -dependence in
dσasym is described completely by the overlap function,
which is independent on the g0 and g2 interrelation,

Iρf (M2) = Re
[
D1eiδFD†

2

]
. (16)

Let us consider the shape of theM -dependence. Figure 1
demonstrates the overlap functions for several pomeron
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Fig. 1.Overlap function Iρf versus M2. The black solid, dashed,
and dotted curves correspond to a simple pole pomeron model
with ∆F = 0, 0.08, and 0.16, respectively. The dashed-dotted
curve represents one particular parametrization of a dipole
pomeron model, [2], calculated for √

sγp = 50 GeV. In each of
the four cases, the grey region corresponds to 1σ variations in
the parameters of the ρ′, ρ′′ and f2 resonances

models. The parameterization for D1 was taken from [7]
(with the ρ/ρ′/ρ′′ parameters and running of the ρ width
taken into account), while the parametrization for D2,
which included both the f2 resonance and the I = 0, J = 2
modified Born term, was taken from [8]. The four black
curves correspond here to different pomeron models. The
solid, dashed, and dotted curves correspond to the simple
pole pomeron model with ∆F = 0, 0.08, and 0.16, respec-
tively. The dashed-dotted curve represents one particular
parametrization of a dipole pomeron model [2], calculated
for √

sγp = 50 GeV. In each of the four cases, the grey
region corresponds to 1σ variations of the parameters in
Di used. The resulting shaded region allows one to see the
typical level of inaccuracy that arises from the parame-
terizations used. It is not large, and allows one to discern
different pomeron models for the Mππ interval below the
f2 peak.

Note that many qualitative features can be easily un-
derstood in the simplified ρ-meson model for D1, (10).
It was found numerically that this approximation gives
also a reasonable quantitative approximation for the over-
lap function.

On the dependence on the momentum transfer, note
that integrating the differential cross section (7) over the
whole ξ, v space, within the mentioned M interval, and
with the k⊥ interval kmax > k⊥ > kmin, (4), one obtains

σbkgd = σρBC1(k2
max − k2

min) + σ2C2 ln
k2
max

k2
min +Q2

m
,

Ci =
∫

dM2|Di(M2)|2, (17)

Numerical estimates show that the second term here,
which represents the Primakoff contribution, can be ne-
glected at the considered values of kmax and kmin, (4). The

integral value of the charge asymmetry, ∆σchas,T, calcu-
lated in the same M and k⊥ regions, is

∆σchas,T =
9
√

5
8

√
σρB · σ2 · ∆Iρf · (kmax − kmin),

∆Iρf =
∫

dM2Iρf (M2). (18)

To obtain simple estimates, we set g2 = 1, g0 = 0.

4.2 ep collisions

We think that the most efficient way to study the problem
of interest is to investigate dipion production in ep →
eπ+π−p, e.g. at HERA without recording of a scattered
electron and proton (and without other particles in the
detector except π+ and π−).

The ep cross section is given by a convolution of the
virtual photon flux originating from the electron with the
cross section of the γp subprocess. The dominant part of
the ep cross section comes from the region of very small
virtuality of the emitted photon. That is the base of the
equivalent photon approximation (see e.g. [10]), in which
the flux of the equivalent photons with energy ω = yEe
and transverse momentum q⊥ is

dnγ =
α

π
dy
y

[
1 − y +

y2

2
− (1 − y)

q2e
q2⊥

]
q2⊥dq2⊥

(q2⊥ + q2e)2
,

with

q2e =
m2
ey

2

1 − y
. (19)

Note that the photon energy ω coincides with the total
dipion energy with high accuracy.

The main contribution to the ep cross section origi-
nates from the region of virtualities q2⊥/(1 − y) + q2e much
lower than the characteristic scale of hadronic interactions.
Therefore,
(i) the distribution is peaked at very small q⊥ when the
scattered electron escapes observation;
(ii) with high enough accuracy one can take for the ampli-
tudes of γp subprocess their on-shell values discussed above;
(iii) the precision of (19) is very high (much better than
k2

⊥,max/m
2
ρ). At this transition from photons to electrons,

the quantities (5) that describe the charge asymmetry are
transformed as follows: the FB variable ξ stays unchanged
since it is independent of a small change of transverse mo-
mentum and keeps its form under the longitudinal boost;
the transverse variable v will be now defined by the same
expression (5), but in terms of the transverse dipion mo-
mentumK⊥ = q⊥+k⊥ with respect to the ep collision axis.

The differential cross section of dipion production in
ep collisions is given by a convolution of the flux (19) with
(14) and (15). For numerical estimates in our kinematical
region (1) it is useful to change the k2

⊥-dependence from
(9) to 1/(1 +Bk2

⊥) which is a good approximation at the
considered Bk2

⊥ < 0.1. In the region (4) we have also
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K2
⊥ 
 Q2

m, q
2
e and the charge-symmetric part of cross

section can be written as (see e.g. [10])

dσeppom

dM2 dK2
⊥ dξ dv dy

=
β√

1 − ξ2 − v2
|A1,0(s)|2|D1(M2)|2 3

4π
(1 − ξ2)

× α

πy

[(
1 − y +

y2

2

)
·
(

log
1
Bq2e

− 1
)

− (1 − y)
]
,

dσepPrim

dM2 dK2
⊥ dξ dv dy

=
β√

1 − ξ2 − v2
σ2|D2(M2)|2

× 15
8π

[
g2
2

2
(1 − ξ2)2 + 3g2

0

(
ξ2 − 1

3

)2

+ g0g2
√

6
(
ξ2 − 1

3

)
(2v2 + ξ2 − 1)

]

× α

πy(K2
⊥ +Q2

m + q2e)

×
[(

1 − y +
y2

2

)
·
(

log
(

(K2
⊥)2

Q2
mq

2
e

)
− 2

)
− (1 − y)

]
.

Note that in the Primakoff contribution we also keep the
termQ2

m+q2e in the denominator, which is negligible in the
considered kinematical range but useful in the estimate of
total cross section.

The charge asymmetric contribution is written now via
the new value v as

dσepasym

dM2 dK2
⊥ dξ dv dy

=
v · β√

1 − ξ2 − v2
· 3

√
5

4π
|A1,0(s)|√σ2

×
[
g2(1 − ξ2) + g0

√
2
3

(3ξ2 − 1)

]

×α|K⊥|
πyK2

⊥

[(
1 − y +

y2

2

)
·
(

log
K2

⊥
q2e

− 1
2

)
− 1 − y

2

]

×Iρf (M2). (20)

The total values of the signal and background integrated
over the entire region (4) similar to those written in (17) and
(18) and with the same notation, written with logarithmic
accuracy (for estimates), are

σepbkgd

dy
= Nγ(y)

[
σρBC1 ln

1
Bq2e

(K2
max −K2

min)

+σ2 C2 ln
K2

max

K2
min

ln
K2

maxK
2
min

Q2
mq

2
e

]
, (21)

∆σepchas,T

dy
= Nγ(y)

9
√

5
8

√
σρB · σ2 · ∆Iρf

×
(
Kmax ln

K2
max

q2e
−Kmin ln

K2
min

q2e

)
.

Here Nγ(y) = (α/πy)(1 − y + y2/2).

5 Estimates of the effect

5.1 Extracting charge asymmetry

For the integrated luminosity L, the statistical signifi-
cance of the result is given by the ratio of the number
of events of interest L∆σchas,T to the dispersion of back-
ground events

√Lσbkgd,

SS =
L∆σchas,T√Lσbkgd

. (22)

In particular, we consider the local statistical sig-
nificance SS(M) defined by this very equation for
a fixed value of the dipion mass M , SS(M) =
Ld∆σchas,T/dM2/

√L dσbkgd/dM2 . The study of the
shape of this SS(M) helps us in the choice of cuts in M
for data processing.

Figure 2 shows this local statistical significance. For the
C-odd dipions, as said above, we assume the ρ-meson dom-
inance with |A1,0| given by (9). For f2-meson production,
σ2 in (12a) is σ2 = 0.42 nb. Besides, we set g0 = 0, g2 = 1
in accordance with the data for f2 production in photon
collisions. All other parameters were already discussed.

Let us remind the reader that the diffractive dipion pho-
toproduction dominates over the Primakoff contribution in
the C-even part of the cross section. Therefore, in the mass
region, where f2 production dominates in the Primakoff
effect, the local statistical significance is estimated as

SS(M) ∝ Re(D∗
2eiδFD1)/|D1| ≤ |D2(M)|.
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Fig. 2. The local statistical significance of the charge asymme-
try (arbitrary units). The solid and dashed curves correspond
to ∆F = 0 and 0.16, respectively
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This suggests that the largest statistical significance comes
approximately from the region under the f2-meson peak
mf − Γf < M < mf + Γf . This is the reason why
we study here the charge asymmetry only in the re-
gion 1.1 < M < 1.4 GeV.

Integration of |Di|2 and of the overlap function Iρf over
this range gives for the quantities in (21) at ∆F = 0

∆Iρf =
∫

dM2I(M2) = 0.114;

C1 =
∫

dM2|D1(M2)|2 = 0.045;

C2 =
∫

dM2|D2(M2)|2 = 0.36. (23)

Note that the value of ∆Iρf depends on ∆F only weakly.

5.2 Numerical estimates

Let us treat γp collisions. Now the statistical significance
of the observation of the charge asymmetry (22) is evi-
dently independent of the upper cut kmax. The upper cut
kmax = 100 MeV guarantees that the odderon contribution
is negligible. The resulting cross sections are

σbkgd = 49 nb; ∆σchas,T = 5.2 nb;

SST ≈ 24 ·
√

Lγp( pb−1). (24)

On the ep collisions we note the following. For the ep
collisions, we take, for definiteness, Lep = 100 pb−1 and
integrate over the y interval 0.2 < y < 0.8. We then ob-
tain the following values of the cross sections and of the
statistical significance:

σepbkgd ≈ 1.5 nb,

∆σchas,T ≈ 0.13 nb ⇒ SST ≈ 34.
(25)

Now for the sensitivity to δF. The above values of the
integral SS show that the effect is observable at HERA with
good confidence. We hope that after dedicated specification
of the models forDi, a detailed study of theM -shape of this
charge asymmetry will allow for extraction of the pomeron
phase δF with reasonable precision.

6 Discussion and conclusions

We showed that the interference between the pomeron ex-
change and the Primakoff effect contributions gives charge
asymmetry in the pion distributions. The absolute value
and the shape of the M -dependence of this charge asym-
metry is sensitive to the phase of the strong amplitude (the
pomeron phase) δF. An accurate study of this shape can
lead to a direct measurement of δF. Our estimates show
that this effect can be studied at HERA.

The approach suggested avoids the problems associ-
ated with the measurement of very small transverse mo-
menta of the detected particles, in contrast to the strong–
Coulomb interference in elastic pp scattering (where one

should measure transverse momenta p⊥ � 100 MeV).
Here, the detected pions have typical transverse momenta
|p±⊥| ∼ 500 MeV (for higher M), which looks measurable
better than the proton momenta in the mentioned case of
Coulomb interference.

Equations written in the text allow one to obtain a
preliminary estimate for δF and find its s-dependence with
an accuracy limited by the details of the experimentation.
A more precise extraction of the absolute value of δF de-
mands more accurate models both for the pomeron and
Primakoff amplitudes. The main features of these models
are well known, and these models can be further improved
right in the course of dedicated experiments on charge
asymmetries (both at high-energy lepton–hadron or low-
energy e+e− colliders). A sketch of how predictions can
be made more precise is given in the text. The invariant
mass interval M = 1.1 ÷ 1.3 GeV seems to be particularly
suitable, since theoretical predictions can be made more
precise here. For each mass interval, these problems should
be studied separately.

Let us take the case M < 1 GeV. At lower dipion in-
variant masses, M � 1 GeV, the study of the transverse
charge asymmetry can also be used for extraction of the
pomeron phase. A more detailed model for the γγ → π+π−
reaction is necessary to make more accurate predictions for
the study of the pomeron phase. This model can be verified
by the measurement of a similar charge asymmetry in the
process e+e− → e+e−π+π− at modern e+e− colliders [11].
That is the subject of forthcoming studies.

Preliminary estimates show that below the ρ peak the
phases of factorsD1 andD0 are close to each other, so that
the contribution of their interference term to the consid-
ered symmetry is small. The dominant contribution to the
charge asymmetry is given here by the ρ/QED interfer-
ence. The best statistical significance of charge asymmetry
comes from the region M = 0.4–0.8 GeV.

The extension of this idea to nuclear targets is straight-
forward. A detailed treatment of charge asymmetry in di-
pion production in eA collisions (e-RHIC or nuclear LHC)
will be given elsewhere.
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